Unsupervised 3D Reconstruction from a Single Image via Adversarial Learning

نویسندگان

  • Lingjing Wang
  • Yi Fang
چکیده

Recent advancements in deep learning opened new opportunities for learning a high-quality 3D model from a single 2D image given sufficient training on large-scale data sets. However, the significant imbalance between available amount of images and 3D models, and the limited availability of labeled 2D image data (i.e. manually annotated pairs between images and their corresponding 3D models), severely impacts the training of most supervised deep learning methods in practice. In this paper, driven by a novel design of adversarial networks, we have developed an unsupervised learning paradigm to reconstruct 3D models from a single 2D image, which is free of manually annotated pairwise input image and its associated 3D model. Particularly, the paradigm begins with training an adaption network via autoencoder with adversarial loss, which embeds unpaired 2D synthesized image domain with real world image domain to a shared latent vector space. Then, we jointly train a 3D deconvolutional network to transform the latent vector space to the 3D object space together with the embedding process. Our experiments verify our network’s robust and superior performance in handling 3D volumetric object generation from a single 2D image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

The task of three-dimensional (3D) human pose estimation from a single image can be divided into two parts: (1) Two-dimensional (2D) human joint detection from the image and (2) estimating a 3D pose from the 2D joints. Herein, we focus on the second part, i.e., a 3D pose estimation from 2D joint locations. The problem with existing methods is that they require either (1) a 3D pose dataset or (2...

متن کامل

Unsupervised Depth Estimation, 3D Face Rotation and Replacement

We present an unsupervised approach for learning to estimate three dimensional (3D) facial structure from a single image while also predicting 3D viewpoint transformations that match a desired pose and facial geometry. We achieve this by inferring the depth of facial key-points in an input image in an unsupervised way. We show how it is possible to use these depths as intermediate computations ...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Perspective Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D Supervision

Understanding the 3D world is a fundamental problem in computer vision. However, learning a good representation of 3D objects is still an open problem due to the high dimensionality of the data and many factors of variation involved. In this work, we investigate the task of single-view 3D object reconstruction from a learning agent’s perspective. We formulate the learning process as an interact...

متن کامل

Stochastic reconstruction of an oolitic limestone by generative adversarial networks

Stochastic image reconstruction is a key part of modern digital rock physics and materials analysis that aims to create numerous representative samples of material microstructures for upscaling, numerical computation of effective properties and uncertainty quantification. We present a method of three-dimensional stochastic image reconstruction based on generative adversarial neural networks (GA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.09312  شماره 

صفحات  -

تاریخ انتشار 2017